A monster in the Milky Way
This image, not unlike a pointillist painting, shows the star-studded centre of the Milky Way towards the constellation of Sagittarius. The crowded centre of our galaxy contains numerous complex and mysterious objects that are usually hidden at optical wavelengths by clouds of dust - but many are visible here in these infrared observations from Hubble.
Infrared observations can pierce through thick obscuring material to reveal information that is usually hidden to the optical observer. This is the best infrared image of this region ever taken with Hubble, and uses infrared archive data from Hubble's Wide Field Camera 3, taken in September 2011.
The center of the Milky Way galaxy, with the supermassive black hole Sagittarius A* (Sgr A*), located in the middle, is revealed in these images. As described in our press release, astronomers have used NASA's Chandra X-ray Observatory to take a major step in understanding why material around Sgr A* is extraordinarily faint in X-rays.
The large image contains X-rays from Chandra in blue and infrared emission from the Hubble Space Telescope in red and yellow. The inset shows a close-up view of Sgr A* in X-rays only, covering a region half a light year wide. The diffuse X-ray emission is from hot gas captured by the black hole and being pulled inwards. This hot gas originates from winds produced by a disk-shaped distribution of young massive stars observed in infrared observations.
The authors infer that less than 1% of the material initially within the black hole's gravitational influence reaches the event horizon, or point of no return, because much of it is ejected. Consequently, the X-ray emission from material near Sgr A* is remarkably faint, like that of most of the giant black holes in galaxies in the nearby Universe.
This work should impact efforts using radio telescopes to observe and understand the "shadow" cast by the event horizon of Sgr A* against the background of surrounding, glowing matter. It will also be useful for understanding the impact that orbiting stars and gas clouds might make with the matter flowing towards and away from the black hole.
Credit:
NASA, ESA, and G. Brammer
Image credit: X-ray: NASA/UMass/D.Wang et al., IR: NASA/STScI